World Bank Group Report Launch:
Financial Protection of Critical Infrastructure Services

Data and Analytics to Design Risk Financing Programs for Critical Infrastructure Services

Jim Hall,
Professor of Climate and Environmental Risks
Director of Research in the School of Geography and the Environment
University of Oxford

11 March, 2021
Risk analytics to inform decision making

Geospatial analysis of risks to infrastructure systems informs:

- Targeting and pricing of disaster risk financing and insurance:
 - Indemnity insurance
 - Parametric insurance
 - O&M finance

- Prioritisation of adaptation investments

- Climate risk reporting for infrastructure investments

- Macro-prudential regulation
Infrastructure risk analysis calculations
Application in Vietnam

Landslide at National highway 4h in Lai Chau – June 2014

Most important routes for agriculture

Maximum economic loss per day from landslide, flooding and storm failures

Economic Loss (million USD/day)

- 0.0-0.2
- 0.2-0.5
- 0.5-0.7
- 0.7-1.0
- 1.0-1.2
- 1.2-1.4
- 1.4-1.7
- 1.7-1.9
- >1.9
Decision support tools

1. Hazard
Hazard maps with intensity and likelihood, under current and future climate scenarios.

2. Networks
Energy, transport, water systems linked to population and economic activity.

3. Services
Network models of service provision give knock-on effects and indirect impacts of individual asset failure.

4. Socio-economics
Population and firm locations provide demand for infrastructure services. Regional supply-use tables.

5. Frailty & Exposure
- Vulnerability
Networks exposed to hazards of varying intensity may lead to direct damages and service disruption.

6. Δ Service Provision
- Criticality
Calculate impact of the failure of any single asset on overall service provision in the networked system.

7. Macroeconomic
Calculate wider impacts on the macro-economy through input-output modelling.

8. Probability × Impact
- Risk
Calculate risk of direct damage and risk of indirect losses due to service disruption.

9. Adaptation options
Introduce changes to the network or response to hazard events. Calculate expected benefits as avoiding potential losses. Summarise and prioritise options.
Demonstrate how criticality analyses and vulnerability assessments for critical infrastructure systems can be used to inform financial risk management by governments, including potential financial products, and present a prototype analytical platform for SE Asian countries.

Apply a criticality framework to a financial risk assessment of critical infrastructure systems to assess whether and how the analysis can be scaled both geographically and intensity of work.
Conclusion
Challenges and Opportunities for Analytics for Financial Risk Management of Critical Infrastructure

Challenges:
- Asset data: condition, design standards, recovery capacity
- Business interruption, supply chains and economic impacts
- Costs and benefits of maintenance and upgrade

Opportunities:
- Growing demand for quantification of infrastructure risks for a variety of purposes
- Earth Observation and crowd source datasets
- Multi-purpose open source risk analysis software and tools